15. Radar Measurements

Radar Measurements

00:00
00:00

H versus h(x)

The H H matrix from the lidar lesson and h(x) h(x) equations from the radar lesson are actually accomplishing the same thing; they are both needed to solve y=zHx y = z - Hx' in the update step.

But for radar, there is no H H matrix that will map the state vector x x into polar coordinates; instead, you need to calculate the mapping manually to convert from cartesian coordinates to polar coordinates.

Here is the h h function that specifies how the predicted position and speed get mapped to the polar coordinates of range, bearing and range rate.

h(x)=(ρϕρ˙)=(px2+py2arctan(py/px)pxvx+pyvypx2+py2) h(x')= \begin{pmatrix} \rho\\ \phi\\ \dot{\rho} \end{pmatrix} = \begin{pmatrix} \sqrt{ p{'}_x^2 + p{'}_y^2 }\\ \arctan(p_y' / p_x')\\ \frac{p_x' v_x' + p_y' v_y'}{\sqrt{p{'}_x^2 + p{'}_{y}^2}} \end{pmatrix}

Hence for radar y=zHx y = z - Hx' becomes y=zh(x) y = z - h(x') .

Definition of Radar Variables

  • The range, ( ρ \rho ), is the distance to the pedestrian. The range is basically the magnitude of the position vector ρ \rho which can be defined as ρ=sqrt(px2+py2) \rho = sqrt(p_x^2 + p_y^2) .
  • φ=atan(py/px) \varphi = atan(p_y / p_x) . Note that φ \varphi is referenced counter-clockwise from the x-axis, so φ \varphi from the video clip above in that situation would actually be negative.
  • The range rate, ρ˙ \dot{\rho} , is the projection of the velocity, v v , onto the line, L L .

Deriving the Radar Measurement Function

The measurement function is composed of three components that show how the predicted state, x=(px,py,vx,vy)T x' = (p_x', p_y', v_x', v_y')^T , is mapped into the measurement space, z=(ρ,φ,ρ˙)T z = (\rho, \varphi, \dot{\rho})^T :

The range, ρ \rho , is the distance to the pedestrian which can be defined as:

ρ=px2+py2 \rho = \sqrt[]{p_x^2 + p_y^2}

φ \varphi is the angle between ρ \rho and the x x direction and can be defined as:

φ=arctan(py/px) \varphi = \arctan(p_y/p_x)

There are two ways to do the range rate ρ(t)˙ \dot{\rho(t)} derivation:

Generally we can explicitly describe the range, ρ \rho , as a function of time:

ρ(t)=px(t)2+py(t)2 \rho(t) = \sqrt{p_x(t)^2 + p_y(t)^2}

The range rate, ρ(t)˙ \dot{\rho(t)} , is defined as time rate of change of the range, ρ \rho , and it can be described as the time derivative of ρ \rho :

ρ˙=ρ(t)t=tpx(t)2+py(t)2=12px(t)2+py(t)2(tpx(t)2+tpy(t)2) \dot{\rho} = \frac{\partial \rho(t)}{\partial t} = \frac{ \partial}{\partial t}\sqrt{p_x(t)^2 + p_y(t)^2} = \frac{1}{2 \sqrt{p_x(t)^2 + p_y(t)^2}} (\frac{ \partial}{\partial t}p_x(t)^2 + \frac{ \partial}{\partial t}p_y(t)^2)

=12px(t)2+py(t)2(2px(t)tpx(t)+2py(t)tpy(t)) =\frac{1}{2 \sqrt{p_x(t)^2 + p_y(t)^2}} (2 p_x(t) \frac{ \partial}{\partial t} p_x(t) + 2 p_y(t) \frac{ \partial}{\partial t} p_y(t))

tpx(t) \frac{ \partial}{\partial t} p_x(t) is nothing else than vx(t) v_x(t) , similarly tpy(t) \frac{ \partial}{\partial t} p_y(t) is vy(t) v_y(t) . So we have:

ρ˙=ρ(t)t=12px(t)2+py(t)2(2px(t)vx(t)+2py(t)vy(t))=2(px(t)vx(t)+py(t)vy(t))2px(t)2+py(t)2 \dot{\rho} = \frac{\partial \rho(t)}{\partial t} = \frac{1}{2 \sqrt{p_x(t)^2 + p_y(t)^2}} (2 p_x(t) v_x(t) + 2 p_y(t) v_y(t)) = \frac{2( p_x(t) v_x(t) + p_y(t) v_y(t))}{2 \sqrt{p_x(t)^2 + p_y(t)^2}}

=px(t)vx(t)+py(t)vy(t)px(t)2+py(t)2 =\frac{p_x(t) v_x(t) + p_y(t) v_y(t)}{ \sqrt{p_x(t)^2 + p_y(t)^2}}

For simplicity we just use the following notation:

ρ˙=pxvx+pyvypx2+py2 \dot{\rho} = \frac{p_x v_x + p_y v_y}{ \sqrt{p_x^2 + p_y^2}}

The range rate, ρ˙ \dot{\rho} , can be seen as a scalar projection of the velocity vector, v \vec{v} , onto ρ \vec{\rho} . Both ρ \vec{\rho} and v \vec{v} are 2D vectors defined as:

ρ=(pxpy), v=(vxvy) \vec{\rho}= \begin{pmatrix} p_x\\ p_y \end{pmatrix}, \space \vec{v}=\begin{pmatrix} v_x\\ v_y \end{pmatrix}

The scalar projection of the velocity vector v \vec{v} onto ρ \vec{\rho} is defined as:

ρ˙=vρρ=(vxvy)(pxpy)px2+py2=pxvx+pyvypx2+py2 \dot{\rho}= \frac{\vec{v} \vec{\rho}}{\lvert \vec{\rho} \rvert} = \frac{ \begin{pmatrix} v_x & v_y \end{pmatrix} \begin{pmatrix} p_x\\ p_y \end{pmatrix} }{ \sqrt{p_x^2 + p_y^2} } = \frac{p_x v_x + p_y v_y}{ \sqrt{p_x^2 + p_y^2}}

where ρ \lvert \vec{\rho} \rvert is the length of ρ \vec{\rho} . In our case it is actually the range, so ρ=ρ \rho = \lvert \vec{\rho} \rvert .

The Next Quiz

(ρϕρ˙)h(x)(pxpyvxvy) \begin{pmatrix} \rho\\ \phi\\ \dot{\rho} \end{pmatrix} \leftarrow h(x) \begin{pmatrix} p_x'\\ p_y'\\ v_x'\\ v_y' \end{pmatrix}

h h is a nonlinear function. In the next quiz I would like to check your intuition about what that means.